Vertex AI

Configure Vertex AI as an LLM provider in agentgateway.

Before you begin

Set up an agentgateway proxy.

Set up access to Vertex AI

  1. Set up authentication for Vertex AI. Make sure to have your:

    • Google Cloud Project ID
    • Project location, such as us-central1
    • API key or service account credentials
  2. Save your Vertex AI API key as an environment variable.

    export VERTEX_AI_API_KEY=<insert your API key>
  3. Create a Kubernetes secret to store your Vertex AI API key.

    kubectl apply -f- <<EOF
    apiVersion: v1
    kind: Secret
    metadata:
      name: vertex-ai-secret
      namespace: kgateway-system
    type: Opaque
    stringData:
      Authorization: $VERTEX_AI_API_KEY
    EOF
  4. Create an resource to configure an LLM provider that references the AI API key secret.

    kubectl apply -f- <<EOF
    apiVersion: agentgateway.dev/v1alpha1
    kind: 
    metadata:
      name: vertex-ai
      namespace: kgateway-system
    spec:
      ai:
        provider:
          vertexai:
            model: gemini-pro
            projectId: "my-gcp-project"
            region: "us-central1"
      policies:
        auth:
          secretRef:
            name: vertex-ai-secret
    EOF
  5. Create an HTTPRoute resource that routes incoming traffic to the . The following example sets up a route on the /openai path to the that you previously created. The URLRewrite filter rewrites the path from /openai to the path of the API in the LLM provider that you want to use, /v1/chat/completions.

    kubectl apply -f- <<EOF
    apiVersion: gateway.networking.k8s.io/v1
    kind: HTTPRoute
    metadata:
      name: vertex-ai
      namespace: kgateway-system
    spec:
      parentRefs:
        - name: agentgateway
          namespace: kgateway-system
      rules:
      - matches:
        - path:
            type: PathPrefix
            value: /vertex
        backendRefs:
        - name: vertex-ai
          namespace: kgateway-system
          group: agentgateway.dev
          kind: 
    EOF
  1. Send a request to the LLM provider API. Verify that the request succeeds and that you get back a response from the API.

    curl "$INGRESS_GW_ADDRESS/vertex" -H content-type:application/json  -d '{
       "model": "",
       "messages": [
         {
           "role": "user",
           "content": "Write me a short poem about Kubernetes and clouds."
         }
       ]
     }' | jq
    curl "localhost:8080/vertex" -H content-type:application/json  -d '{
       "model": "",
       "messages": [
         {
           "role": "user",
           "content": "Write me a short poem about Kubernetes and clouds."
         }
       ]
     }' | jq

    Example output:

    {
      "id": "chatcmpl-vertex-12345",
      "object": "chat.completion",
      "created": 1727967462,
      "model": "gemini-pro",
      "choices": [
        {
          "index": 0,
          "message": {
            "role": "assistant",
            "content": "In the cloud, Kubernetes reigns,\nOrchestrating pods with great care,\nContainers float like clouds,\nScaling up and down,\nAutomation everywhere."
          },
          "finish_reason": "stop"
        }
      ],
      "usage": {
        "prompt_tokens": 12,
        "completion_tokens": 28,
        "total_tokens": 40
      }
    }

Next steps

  • Want to use other endpoints than chat completions, such as embeddings or models? Check out the multiple endpoints guide.